

UK Health Security Agency

Nanopore sequencing reveals the hidden intra-outbreak accessory genome variation of Shiga toxin-producing *E. coli* (STEC) 0157:H7.

David R Greig^{*1,2,3}, David L Gally^{1,3}, Saheer E Gharbia^{1,4}, Timothy J Dallman⁵ & Claire Jenkins^{1,2} 🥑 @gingerdavid92 1) UKHSA, London, UK. 2) NIHR HPRU for GI pathogens, Liverpool, UK. 3) The Roslin Institute, University of Edinburgh, Edinburgh, UK. 4) NIHRI HPRU for GED, Warwick, UK. 5) Utrecht University, Utrecht, Netherlands.

INTRODUCTION

Shiga toxin-producing *Escherichia coli* (STEC) are a group of zoonotic, foodborne pathogens defined by the presence of phage-encoded Shiga toxin genes (*stx*)^[1]. STEC cause gastrointestinal disease in humans and symptoms include severe bloody diarrhoea, abdominal pain and nausea. In 5-15% of cases infection leads to Haemolytic Uremic Syndrome (HUS), characterised by kidney failure and/or cardiac and neurological complications^[1].

STEC O157:H7 genomes range from 5.4Mbp to 5.6Mbp in size, and a high proportion (9-15%) is comprised of mobile genetic elements and prophages ^[2].

Due to the limitations of short read sequencing technologies in handling the homologous regions of the STEC chromosome, information and context regarding inter and intra variation in prophages, structural variation and context surrounding plasmid content is lost.

We retrospectively investigated five outbreaks of Shiga toxin-producing *Escherichia coli* (STEC) O157:H7:

Associated with consumption of contaminated leafy greens (n=18),

METHODS

- DNA extraction was performed using a Qiagen Qiasymphony followed by library preparation using the Nextera XP kit followed by sequencing on the Illumina HiSeq 2500.
- DNA extraction was also performed, using Revolugen's Fire Monkey kit followed by library preparation using SQK-RBK004 (Rapid) kit and sequencing on the Oxford Nanopore Technologies (ONT) MinION on a FLO-MIN106D flow cell.
- Nanopore basecalling, read trimming and read filtering were performed using Guppy v3-5 FAST, Porechop v0.2.4^[3] and Filtlong v2^[4] respectively.
- Nanopore reads where assembled using Flye v2.8^[5] and the draft was corrected suing Nanopolish v0.11.3^[6] (ONT reads), Pilon v1.22^[7] (Illumina reads) and Racon v1.3.3^[8] (Illumina reads).
- Prophages sequences were collected manually from annotated finalised assemblies using Prokka v1.14.6^[9] and compared in a pairwise format using Mash v2.2.2^[10].

- Associated with consumption of contaminated mince beef (n=17),
- Associated with participation in a mud based obstacle course (n=12),
- Associated with attendance of a lambing event (n=10)
- Associated with consumption of raw drinking milk (n=23).

The ability to scrutinise the accessory genomes of pathogens provides insight to the dynamic nature of the accessory genome, acquisition and loss of virulence genes and antibiotic resistance determinants, the genomic context of mobile genetic elements and large chromosomal rearrangements, that may have public health implications.

Both Illumina and Nanopore datasets were processed using SnapperDB v0.2.8 to determine relatedness as described in Greig et al 2019^[11].

RESULTS

• Outlier	• Outlier
	• 435354 Nanopore 2017 Human
•	421196 Illumina 2017 Human
	437024 Nanopore 2017 Human
427603 Illumina 2017 Human	427603 Illumina 2017 Human
	423917 Illumina 2017 Human
435354 Illumina 2017 Human	423917 Nanopore 2017 Human
	437024 Illumina 2017 Human
437024 Illumina 2017 Human	427603 Nanopore 2017 Human
	413227 Nanopore 2017 Human
423917 Illumina 2017 Human	• 437021 Illumina 2017 Human
	435354 Illumina 2017 Human
437021 Illumina 2017 Human	413227 Illumina 2017 Human
	437021 Nanopore 2017 Human
421196 Illumina 2017 Human	421196 Nanopore 2017 Human
	• 811035 Illumina 2019 Human
• 811035 Illumina 2019 Human	• 804533 Illumina 2019 Human
	• 811034 Illumina 2019 Human
• 811034 Illumina 2019 Human	811035 Nanopore 2019 Human
	811034 Nanopore 2019 Human
 804533 Illumina 2019 Human 	 804533 Nanopore 2019 Human
	432299 Nanopore 2017 Animal
438729 Illumina 2017 Animal	• 432299 Illumina 2017 Animal
	• 432301 Illumina 2017 Animal
429691 Illumina 2017 Milk	• 432750 Illumina 2017 Animal
	• 438729 Illumina 2017 Animal
432297 Illumina 2017 Animal	• 432300 Illumina 2017 Animal
	• 438602 Illumina 2017 Animal
437023 Illumina 2017 Human	438602 Nanopore 2017 Animal
	432750 Nanopore 2017 Animal
432301 Illumina 2017 Animal	• 432298 Nanopore 2017 Animal
	432297 Illumina 2017 Animal
429692 Illumina 2017 Milk	429693 Illumina 2017 Milk
	429692 Nanopore 2017 Milk
432750 Illumina 2017 Animal	437022 Nanopore 2017 Human
	438729 Nanopore 2017 Animal
432298 Illumina 2017 Animal	437023 Nanopore 2017 Human

- A comparison of variant calling and SNP typing of raw drinking milk outbreak samples between short or long read sequencing data, placed 23/23 samples on the phylogeny within a single SNP of its pair. Only one sample was a single SNP from its Illumina equivalent. (Figure 1).
- Nanopore sequencing enabled the comparison of *stx*-encoding prophages across outbreaks. This comparison showed that most *stx*encoding prophages cluster based on the STEC CC11 sub-lineage of their host and *stx*-encoding bacteriophage integration site (SBI) (Figure 2).

Figure 1. Maximum-likelihood phylogeny showing the raw drinking milk outbreak cluster (A). A second maximum-likelihood phylogeny showing both Illumina derived and Nanopore derived SNP-typing results for each of the outbreak samples (B).

Figure 4. Easyfig^[12] alignment showing the chromosome and loci of prophages in all samples in the petting farm associated outbreak. Stx-encoding prophage, Red; Prophage-like region, Blue; Locus of Enterocyte Effacement (LEE), Green and other non-stx-encoding prophages, Black.

Figure 3. Neighbour joining tree based on Jaccard distances of all prophages within samples in the obstacle course associated outbreak. Prophage clusters are coloured as follows: Green, shared between all samples (n=23); Yellow, shared between two samples or more and Red, unique to a single sample.

Clusters are labelled with the SBI of that prophage and the number of samples that contained that phage. * denotes compounded prophages.

- The prophage content of each outbreak including non-stx-encoding prophages was also variable. Food associated outbreaks showed a more conserved prophage content with animal contact and environmental (mud obstacle course) associated outbreaks displaying more prophage content variation. (Figure 3).
- Each outbreak had varying levels of micro-evolutionary events with some chromosome's being quite conserved and others containing many large chromosomal re-arrangements and translocations as in the petting farm outbreak (Figure 4).

	644 54276 stx1a yehV	
	● 180 54276 stx1a yehV	
	636375 49581 stx1a yehV	
	579238 49550 stx1a vehV	
	 619812 49339 stx1a yehV 	
	 581282 49599 stx1a yehV 	
	 586769 49625 stx1a yehV 	
	● 123941 49185 stx1a yehV	
	632996 49493 stx1a yehV	
	 610029 49562 stx1a yehV 	
	• 595557 57575 stx2a sbcB	
	• 437024 56425 stx2a sbcB	
	432300 56430 SIX2a SDCB	
	 432297 56150 stx2a sbcB 	
	427603 56435 stx2a sbcB	
	• 437021 56429 stx2a sbcB	
	437022 56435 stx2a sbcB	
	● 429693 56422 stx2a sbcB	
	429691 56420 stx2a sbcB	
	413227 56183 stx2a sbcB	
	432299 56427 stx2a sbcB	
	435354 56441 stx2a sbcB	
	• 423917 56427 stx2a sbcB	
	438729 56441 stx2a sbcB	
	• 432750 56433 stx2a sbcB	
	811034 56438 stx2a sbcB	
	811035 56405 stx2a sbcB	
	 437023 56427 stx2a sbcB 	
	438602 56379 stx2a sbcB	
	804533 56433 stx2a sbcB	
	E45000 44014 StX2a SDCB	
	G → 397404 59098 stx2c sbcB	
9000 68708 stx2c sbcB		
-● 315176 61851 stx2a sbcB		
	■ E34500 57463 stx2c sbcB	
	EC4115 62526 stx2c sbcB	
	● 194195 60586 stx2c sbcB	
	267849 61840 stx2c sbcB	
	824422 59045 SIX2C SDCB 818062 58593 stx2c sbcB	
	• 644 65974 stx2c sbcB	
	→ 350 67639 stx2c sbcB	
	● 180 63606 stx2c sbcB	
	619812 59803 stx2c sbcB	
	632996 59799 stx2c sbcB	
	• 610029 59793 stx2c sbcB	
	 579238 58488 stx2c sbcB 	
	• 581282 58535 stx2c sbcB	
	 500709 58530 SIX20 SDCB 634783 58619 stx20 shcB 	
	636375 58515 stx2c sbcB	
	0.01	

Figure23. Neighbour joining tree based on Jaccard distances of publicly available and raw drinking milk associated stx-encoding prophages. Prophages are coloured by CC11 sub-lineage. Sub-lineage Ia, Green; Ib, Yellow; Ic, Red; I/IIa, Blue; I/IIb, Grey; IIa, Orange; Ilb, Black and Ilc, Purple.

DISCUSSION & CONCLUSIONS

ACKNOWLEDGEMENTS

- Nanopore sequencing can generate information in real time leading to faster generating of results and could help to implement public health actions faster.
- Nanopore sequencing can open the accessory genome of GI pathogens which is currently much more difficult with short-read sequence technologies.
- This ability will allow us to determine more information from the accessory genomes of GI pathogens including:
 - Detection and characterisation of prophage content.
 - Isolation and typing of plasmid content.
 - Detection of large-scale chromosomal rearrangements and other structural variation.
- The genomes of emerging highly-pathogenic strains can be characterised rapidly and aid in our understand as to why they are more pathogenic or emerging more successfully.
- The ability to characterise the accessory genome in this format is the first step to understanding the significance of these micro-evolutionary events and their impact on the evolutionary history, virulence, and potentially the likely source and transmission of this zoonotic, foodborne pathogen.

REFERENCES

The research was funded by the National Institute for Health Research Protection Research Unit (NIHR HPRU) in Gastrointestinal Infections at University of Liverpool in partnership with UK Health Security Agency (UKHSA) formally Public Health England (PHE), in collaboration with University of Warwick. The views expressed are those of the author(s) and not necessarily the NIHR, the Department of Health and Social Care or UKHSA.

Health Protection Research Unit NIHR in Gastrointestinal Infections at University of Liverpool

1) Byrne L, Jenkins C, Launders N, Elson R, Adak GK. The epidemiology, microbiology and clinical impact of Shiga toxin-producing Escherichia coli in England, 2009-2012. Epidemiol Infect. 2015;143:3475-87. doi: 10.1017/S0950268815000746. 2) Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev. 2013;26:822-80. doi: 10.1128/CMR.00022-13 3) Wick R. Unpublished. https://github.com/rrwick/FiltLong. 4) Wick R. Unpublished. https://github.com/rrwick/FiltLong. 4) Wick R. Unpublished. https://github.com/rrwick/Porechop. 5) Kolmogorov M, Yuan J, Lin Y and Pevzner PA. 2019. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 37(5):540-546. doi: 10.1038/s41587-019-0072-8. 6) Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015. 12(8):733-5. doi: 10.1038/nmeth.3444. 7) Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLOS One. 9(11):e112963. doi: 10.1371/journal.pone.0112963. doi: 10.1371/journal.pone.0112963. 8) Vaser R, Sović I, Nagarajan N, Šikić M. 2017. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27(5):737-46. doi: 10.1101/gr.214270.116. 9) Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069. doi: 10.1093/bioinformatics/btu153. 10) Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016;17:132. doi: 10.1186/s13059-016-0997-x. 11) Greig DR, Jenkins C, Gharbia S, Dallman TJ. Comparison of single nucleotide variants identified by Illumina and Oxford Nanopore technologies in the context of a protentional outbreak of Shiga toxin-producing Escherichia coli. Gigascience/giz104. 12) Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011;27:1009–1010. doi: 10.1093/bioinformatics/btr039. © Crown copyright 2022